An algorithm for realizing Euclidean distance matrices

نویسندگان

  • Jorge Alencar
  • Tibérius O. Bonates
  • Carlile Lavor
  • Leo Liberti
چکیده

We present an efficient algorithm to find a realization of a (full) n × n squared Euclidean distance matrix in the smallest possible dimension. Most existing algorithms work in a given dimension: most of these can be transformed to an algorithm to find the minimum dimension, but gain a logarithmic factor of n in their worstcase running time. Our algorithm performs cubically in n (and linearly when the dimension is fixed, which happens in most applications).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مدل‌سازی صفحه‌ای محیط‌های داخلی با استفاده از تصاویر RGB-D

In robotic applications and especially 3D map generation of indoor environments, analyzing RGB-D images have become a key problem. The mapping problem is one of the most important problems in creating autonomous mobile robots. Autonomous mobile robots are used in mine excavation, rescue missions in collapsed buildings and even planets’ exploration. Furthermore, indoor mapping is beneficial in f...

متن کامل

Assessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation

Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...

متن کامل

On the Euclidean TSP with a permuted Van der Veen matrix

We discuss the problem of recognizing permuted Van der Veen (VdV) matrices. It is well known that the TSP with a VdV matrix as distance matrix is pyramidally solvable. In this note we solve the problem of recognizing permuted strong VdV matrices. This yields an O(n4) time algorithm for the TSP with a permuted Euclidean VdV matrix. The problem, however, of recognizing permuted VdV matrices in ge...

متن کامل

Riemannian Sparse Coding for Positive Definite Matrices

Inspired by the great success of sparse coding for vector valued data, our goal is to represent symmetric positive definite (SPD) data matrices as sparse linear combinations of atoms from a dictionary, where each atom itself is an SPD matrix. Since SPD matrices follow a non-Euclidean (in fact a Riemannian) geometry, existing sparse coding techniques for Euclidean data cannot be directly extende...

متن کامل

Normalized Clustering Algorithm Based on Mahalanobis Distance

FCM (fuzzy c-means algorithm) based on Euclidean distance function converges to a local minimum of the objective function, which can only be used to detect spherical structural clusters. The added fuzzy covariance matrices in their distance measure were not directly derived from the objective function. In this paper, an improved Normalized Clustering Algorithm Based on Mahalanobis distance by t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2015